

T3 STAR TRACKER

Miniaturized Optical Head with Built-In Processing Unit

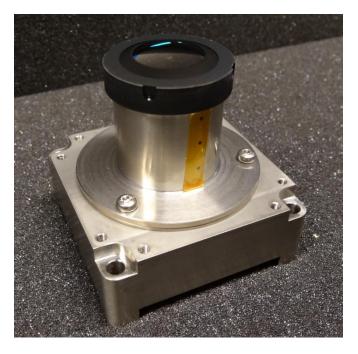
STAR-TRACKER-ON-A-CHIP TECHNOLOGY

The compact T3 star tracker is ideally suited for nano- and microsatellite missions with lifetime in excess of 5 years. The star tracker is developed by Terma A/S and Space Inventor ApS based on a scaled-down version of the Terma T1 star tracker with a smaller optical system and computer processing unit based on high reliable COTS components.

The Optical Head (OH) is based on the sensor chip Faintstar-2 developed under ESA contracts. The Faintstar-2 is a CMOS Active Pixel Sensor with a suite of integrated on-chip functionality supporting a completely new class of miniaturized high performance star trackers.

Terma has taken the miniaturization challenge as far as possible, without compromising the accuracy required from a state-of-the-art star tracker.

The processing unit accommodates the star catalogue and software algorithms for autonomous attitude acquisition and tracking.


FEATURES

- High accuracy
- Very compact with build in processing unit
- · Rad-hard aspherical optics
- Integrated baffle with outstanding straylight attenuation
- Excellent thermal stability
- Extremely low recurrent cost at larger quantities

QUALIFICATION STATUS

TRL 8 – first flight in 2022.

Interested parties are invited to write our commercial contact, Hans Henrik Bonde, hhb@terma.com.

Miniaturized Optical Head with Built-In Processing Unit

	Т3		
Accuracy	See below		
Maximum Update Rate	5 Hz		
Slew Rate	< 0.3 deg/sec full performance < 1.5 deg/sec reduced performance		
Acquisition time	10 s		
Sun exclusion angle (shown example, other options on request)	37.5 deg		
SAA & SEU Tolerance worst case GEO flux (25k protons/cm2/s)	Acquisition & tracking full performance		
Field of View	20 deg circular, full moon accepted in FOV		
APS Resolution	1024 x 1024 pixels		
Lifetime	> 5 years		
Lenses	Aspherical, radiation hard glasses		
Power consumption	2 W		
Supply Voltage	5 – 12 V		
Spacecraft Interface (TC/TM)	CAN or RS422		
Interface Connector	Harwin M80		
Computer Architecture	Zynq Ultrascale		
Mass	350 g		
Dimensions	60 x 60 x 100 mm ³		
Operating Temperature	-40 °C to +30 °C (full performance) +30 °C to +50 °C (reduced performance)		
Survival Temperature	-40 °C to +70 °C		

T3 STAR TRACKER ACCURACY

Performance		BOL (EOL)		
Bias	[arcsec] max	10		
Thermal Stability	[arcsec/K] max	0.1		
Spatial Error (FOV)	[arcsec] 3σ	2.1		
Spatial Error (Pixel)	[arcsec] 3σ	1.3 (1.7)		
		+30°C	+50°C	
Temporal Noise (rate < 0.3 deg/sec)	[arcsec] 3σ	2.0 (2.6)	8 (10)	
Temporal Noise (rate < 0.8 deg/sec)	[arcsec] 3σ	6 (8)	24 (31)	
Temporal Noise (rate < 1.50 deg/sec)	[arcsec] 3σ	22 (29)	89 (114)	

General remark: All parameters are quoted for normal to Line of Sight (LOS) directions. Along LOS, values are a factor of 7 higher, except for the Bias and Thermal Stability parameters.

Miniaturized Optical Head with Built-In Processing Unit

ORDERING INFORMATION

The T3 star tracker components can be ordered according to the table below.

Legend:

- A component is identified by a part number and dash variant according to xxxxxxx-yyy
- A component can be ordered as an engineering model (EM) or flight model (FM)
- EEE screening level is per default grade 2 (QML-Q) for sensor and proximity electronics. Computer EEE components are high reliable COTS

Component	P/N [xxxxxxx]	EM [-yyy]	FM [-yyy]
T3 with RS422 TCTM interface and 37.5 Sun exclusion angle baffle	1445040	-218	-018
T3 with CAN bus TCTM interface and 37.5 Sun exclusion angle baffle	TBD	-218	-018
Dynamic OGSE, 37.5 deg SEA Baffle interface	1665815-037		
Static OGSE, 37.5 deg SEA Baffle interface	903964-037		

