OBC SIMULATORS

Flight Computer Digital Twins

An OBC Simulator is a simulation – or digital twin - of a real spacecraft flight computer. These are used in a variety of applications. The most common are:

- Software Validation Facilities: For development and testing of flight software without the need of a real flight computer
- Operational Simulators: Used to simulate the spacecraft and other elements for the purpose of Operator Training, Flight Procedure Validation and Ground Segment Qualification

In recent years, Terma have provided a number of models for RUAG flight computers (https://www.ruag.com/en/products-services/space/electronics/satellite-and-launcher-computers)

Supported Computers
Currently three families of computer are supported:

- OBC flown in missions such as MTG, SARah, Euclid
- New generation OBC used in PLATO – OBC-NG
- Constellation Single Board Computer – C-OBC

The Simulator
All redundancies and cross strappings are modelled. SpaceWire, MIL-1553, CAN & OBDH Buses are modelled. Simulation of two processors (A and B side), also running in dual boot, is supported. The data storage part of the CREOLE ASIC can be selected to be modelled in RAM (4GB) or on files to disc. Modelling of external Solid-State Mass Memory is also supported if required

Failures are supported – for example model stops responding, power under/over voltage. More detailed modelling exists for the OBDH, 1553, SPW where more specific testing of the OBSW is required – for example - failing the 1553 Status response from a specific remote terminal.

Architecture
The simulator is made up of a number of models. At the core is the processor emulator. This is surrounded by a variety of models simulating the ASICs (CREOLE, COLE, CROME2) and buses. Power and storage are also modelled. Optionally other items can also be provided as models, such as Remote Terminal Units (RTU) and Solid State Mass Memory (SSMM).

Testing
Testing of the model uses a twostep process. The models come with an SMP2 Simulation Testing Infrastructure used for automated unit, integration and system level testing.
For more hardware representative level testing, the same environment that RUAG use to test the real hardware – the TEM tool – is used to test the simulator. This includes the use of RUAG Test Application Software (TASW).

The use of the RUAG tool covers a broad set of tests. The result is a very robust model that can then readily be integrated into a full simulator.

Processor Emulator

The processor emulator at the core of the model is a Terma product - TEMU. Continual investment is made to ensure it can support the latest processors used in the space domain. The following processor models are included:

- SPARCv8 based ERC32, LEON2 (AT697), LEON3 (UT699, UT700 etc), LEON4 (GR740).
- ARMv7 support includes the TMS570
- PowerPC architecture is also supported (PPC750, P2020)

For more information, visit: https://www.terma.com/space/space-segment/flight-processor-emulators/

Performance

The performance of the model is mainly driven by the performance of the emulator. For processors such as the LEON series and ERC32, the emulator can achieve more than 5 times real time performance.

Model Development

The environment in which the model is developed is Linux (various variants supported). The ESA/ESOC SIMULUS tools are used for the development, including the design. The models are developed to the SMP2/ECSS-SMP standard. This means they can be readily integrated into other simulators, so users are not constrained to use the ESA tools – there are already several examples of this.